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Abstract. Anticipating subsequent applications in nuclear structure theory, a first construction of
a Dyson mapping for aq-deformedu(3) algebra, relevant to this field, is presented. To achieve this,
a q-deformedsp(4, R) algebra is initially considered, realized in terms of tensor operators with
respect to the standardsuq(2) and containing aq-deformedso(3) angular momentum algebra. The
desired mapping is then realized in terms of two boson-type conjugated tensor operators of first
rank. A key problem is to determine the commutation relations between them. Our construction is
based on the requirement that subsets of the commutation relations of the originalso(3) algebra is
preserved. As a result the images of theso(3)-subalgebra ofsp(4, R) close the same commutation
relations as the initial subalgebra of the angular momentum. In addition aq-deformedu(3) algebra,
containing theso(3)-subalgebra of the images, is obtained. Its generators are theq-deformed
components of a quadrupole operator, together with the images of theso(3)-subalgebra. In the
limiting caseq → 1 the reductionsu(3) ⊃ so(3), crucial to nuclear structure physics, is recovered.

1. Introduction

In the last decade interest in deformed algebraic structures, introduced some time ago, has
been re-established and much work has been done both in developing the mathematical theory
of quantum algebras and at the same time extending their physical applications [1]. Some
applications, aiming to explore the possible role of theq-deformation parameter in the theory
of nuclear collective structure have, for example, been reported at the level ofsuq(2) [2–4].
Nevertheless, more general applications in this field are still restricted, a situation which may
be addressed by further exploringq-deformed group theoretical structures and methods, in
particular linked to theq-deformed extensions of algebraic models associated with nuclear
collective motion [5, 6].

A case in point concerns the reduction of thesu(3) algebra, containing the components
Q2
m(m = 0,±1,±2) of the algebraic quadrupole operator, to theso(3) algebra of the angular

momentumL1
m(m = 0,±1). This is a basic and crucial element, common to nuclear collective

models which exploit the important quadrupole degree of freedom in conjunction with a
classification scheme which utilizes angular momentum, starting with the ElliottSU(3)model
[7] and also using, for example, in the pseudo-SU(3)model [8], the symplectic collective model
[9] and the interacting boson model (IBM) [10]. However, this reduction is a complicated,
and not completely resolved problem in theq-deformed extension, into which much effort has
recently been put [11, 12].
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In [11] the construction ofsuq(3) is approached by generating ansoq(3)-algebra,
isomorphic to the standardsuq(2), in terms of three-dimensional (3D)q-oscillators. By
construction, thissuq(2) is then a subalgebra of thesuq(3) in the Chevalley basis, but its
generators do not form aq-deformed tensor of first rank. Furthermore, this approach does not
facilitate the construction of theq-analogue of the physically important quadrupole operator.
In our construction later we succeed in addressing both these issues.

What is obtained in [11] is a 3D representation ofsuq(2) which is further used by Quesne
[12] to defineq-bosonic operators which transform asq-tensor operators (q-vectors) under
thissuq(2). Their coupled commutators are written down in [12] in analogy with the classical
case for the semidirect sum of the Heisenberg–Weyl Lie algebraw(3) andso(3). A Dyson
representation in terms of the standardq-bosonic oscillators is then obtained. By irreducible
tensor coupling a scalar, a vector and a rank two tensor are proven to generate aq-deformation
of a quadraticu(3)which, however, is not aq-analogue of the Elliottu(3) algebra, as obtained
by us.

Our construction is based, among other considerations, on the observation that a very
natural way to obtain the embedding of the angular momentum algebra is to consider tensor
operators with respect to it and then to generate the higher rank algebras in terms of these
operators. This is a procedure used in most of the well known algebraic models. In order
to extend this technique one needs a well developed theory of the angular momentum in the
q-deformed case, but the Wigner–Racah algebra forSUq(2) is already well developed and so
we will use the definitions and results of [13].

Based on this idea aq-deformedsp(4, R) algebra is generated in [14, 15] by the possible
tensor products of the two fundamentalSUq(2) spinors. In the classical case this algebra [16] is
of physical interest by itself and is also easily generalized to the higher rank cases—sp(2n,R),
n = 3, 4, . . . . In general, the groupSp(2n) can be used to describe pairing correlations in
systems containing different kinds of particles [17], while the non-compact version of this group
is applied in the description of collective vibrational excitations of a system of particles moving
in ann-dimensional harmonic oscillator potential. With similar applications in mind in the
q-deformed case we emphasise that a natural procedure entails embedding into aq-deformed
sp(4, R) algebra, by construction, aq-deformedso(3)-subalgebra, the latter being generated
by the components of a first-rank tensorL1

m (m = 0,±1) which can be interpreted as an
angular momentum operator.

A further consideration is that the symplectic algebras are particularly convenient for
boson mapping, a situation often exploited in nuclear structure physics. Originally the
mapping methods [18] were formulated and motivated from the point of view of replacing
fermion degrees of freedom directly with exact boson degrees of freedom. This mapping of
fermion pairs provides a certain microscopic justification for various boson models of nuclear
structure. Further development of these methods also points to the efficiency and usefulness of
a group theoretical interpretation of the formalism and facilitated their generalization to other
systems which have a definite algebraic structure, such as boson pairs and spherical tensors.
Mappings of this kind have also been used to obtain the relationship between the different
boson models [19].

This mapping procedure generally leads to a larger space for the boson images of the initial
algebra. Reducing this larger space to the required dimension of the initial one is formulated
as the identification of non-physical or spurious states [20]. A solution of this problem can
be obtained by means of a pure group-theoretical analysis, both in the case of the mapping
of fermion (compact) [21] or boson (non-compact) [19] pairs (algebras). This procedure is
actually equivalent to obtaining the embedding of the image of the initial algebra in the larger
space of the images.
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Our idea is to use a similar procedure in theq-deformed case in order to obtain through
the mapping of thesp(4, R) algebra the embedding of the image of itsso(3) subalgebra in
the larger space of the images, which is proven to be spanned by the generators of au(3)
q-deformed algebra. For this purpose, in analogy with the classical case, a Dyson mapping of
theq-deformedsp(4, R) obtained in [15] is considered.

The paper is organized as follows: we first present notation, definitions and a short review
of theq-deformedsp(4, R) algebra. For this algebra the mapping procedure is then given step
by step, using, where possible, analogies with the classical Dyson mapping. The resulting
algebraic structure associated with the image of the compact subalgebraso(3) can then be
utilized to construct images forq-deformed quadrupole operators, finally leading to au(3)
realization and the important embeddingu(3) ⊂ so(3) for q-algebras.

2. The initial q-deformedsp(4, R)

In [14, 15] aq-deformation of the physically interestingsp(4, R) algebra is generated in terms
of irreducibleq-tensor operators with respect to the oscillator representation of the standard
suq(2) algebra, defined through the commutation relations of its generatorsJ± andJ0

[J0, J±] = ±J± [J+, J−] = [2J0] (1)

where [X] ≡ (qX − q−X)/(q − q−1).
As in [13] an irreducible tensor operator (ITO)T l of rank l is defined through the

commutation relations of its componentsqT lm (m = −l,−l + 1, . . . , l) with the suq(2)
generators

[J0, qT
l
m] = mqT

l
m (2)

[J±, qT lm]qm =
√

[l ∓m][ l ±m + 1]qT
l
m±1q

−J0 (3)

where

[A,B]qm = AB − qmBA (4)

andm is called the degree of theq-commutator. The oscillator representation [22] of the
algebras considered is given in terms of annihilationai , creationa†

i (with (a†
i )

† = ai) and
number operatorsNi of q-bosons(i = 1, 2, . . . , r) which satisfy

aia
†
i − q1a

†
i ai = q−Ni (5)

aia
†
i − q−1a

†
i ai = qNi (6)

[Ni, ai ] = −ai [Ni, a
†
i ] = a†

i . (7)

The operatorsai, a
†
i andNi for i = 1, 2 do not form an ITO [1] with respect to the boson

oscillator representation of thesuq(2) algebra

J+ = a†
1a2 J− = a†

2a1 J0 = N1−N2

2
. (8)

However, the following modification of the creation and annihilation operators [1, 15]

t1/2,1/2 = a†
1q

N2/2 t1/2,−1/2 = a†
2q
−N1/2 (9)

t̃1/2,1/2 = q−1/2a2q
−N1/2 t̃1/2,−1/2 = −q1/2a1q

N2/2 (10)

defines the components of two tensors of rank 1/2 (spinors) with respect to the boson [1]
representation of thesuq(2) algebra defined by the generators (8). We observe that in the
q-deformed case the construction of bosonsuq(2) tensor operators is more complicated than
in the classical case.
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Working in terms of ITOs gives us the possibility to use the tensor product with respect
to thesuq(2), defined in accordance with standard comultiplication rules for this algebra [13].
The tensor product of two ITOs is defined as in the classical case in the following way

(qT
(l) ⊗ qQ

(k))(r) :=
∑
m1m2

qC
rm
lm1km2q

Q(k)
m2q
T (l)m1

(11)

where the following restrictions hold

r = |k − l|, |k − l + 1|, . . . , k + l m = m1 +m2 = −r,−r + 1, . . . , r

m1 = −l,−l+1, . . . , l m2 = −k,−k + 1, . . . , k.

TheqCrmlm1km2
are Clebsch–Gordan coefficients (CGCs) for thesuq(2)Wigner–Racah algebra,

obtained in [13].
From the two fundamentalsuq(2) spinors (9) and (10) the following tensor products can

be constructed by means of the definition (11)

{t1/2⊗ t1/2}lm := T lm l = 1, m = 0,±1 (12)

{t̃1/2⊗ t̃1/2}lm := T̃ lm l = 1, m = 0,±1 (13)

{t̃1/2⊗ t1/2}lm := Llm l = 0, 1, m = −l,−l+1, . . . , l. (14)

The explicit form of the operatorsT 1
m, T̃ 1

m andLlm in terms of boson annihilation and creation
operatorsai anda†

i , i = 1, 2, is given in [14]. Important properties of the tensor operators
obtained in this way are their conjugation relations

(T 1
m)

‡ = (−1)1−mq−mT̃ 1
−m (T̃ 1

m)
‡ = (−1)1−mq−mT 1

−m (15)

(L1
m)

‡ = (−1)−mq−mL1
−m. (16)

Using equations (5), (6) and (7), the commutation relations between the operatorsT 1
m,

T̃ 1
m;m = 0,±1 andLlm; l = 0, 1;m = −l,−l+1, . . . , l are calculated in [14]. In so doing

theq-boson commutation relations are applied according to the convention that equation (5)
applies toi = 1, while equation (6) applies toi = 2. This convention complies with the tensor
nature of the spinors (9) and (10) and the tensor products (12), (13) and (14).

Later we introduce and discuss these commutation relations, from a point of view which
is more appropriate for the purpose of obtaining aq-boson realization of theq-deformed
sp(4, R), finally to be extended tou(3).

First, we focus on the components of the operatorL1
m which satisfy

[L1
m1
, L1

m2
] = m1q

−(m1+m2)
√

[2]L1
m1+m2

q−2J0 m1 6= 0. (17)

On the right-hand side of equation (17) we see that, in addition to the expected appropriate
componentL1

m1+m2
, the operatorq−2J0, which in the limitq → 1 tends to one, also appears.

This is a direct consequence of the deformation limit and can be traced explicitly to theq-boson
commutator convention mentioned earlier.

The operatorq−2J0 obviously commutes with the tensor operators (12), (13) and (14),
according to their tensorial properties (2), in the following way

[q−2J0,Kl
m]q−2m = 0 (18)

whereKl
m represents any of the ten components of the operatorsLlm, T 1

m andT̃ 1
m, l = 0, 1;m =

0,±1. It is simple to transform awayq−2J0 on the right-hand side of equation (17) if we rescale,
as in [15], each component of the generators to

K̂l
m =

√
[1 + δm,0]Kl

mq
−2J0 l = 0, 1, m = 0,±1. (19)
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This rescaling only changes the degree of theq-commutators, as can, for example, be seen
explicitly in the modification of the commutation relations (17)

[L̂1
m1
, L̂1

m2
]q2(m2−m1) = [m1−m2]q(m2−m1)L̂1

m1+m2
. (20)

The operatorŝL1
m can thus be interpreted as generators of aq-deformedso(3) algebra,

isomorphic to aq-deformedsu(2). These operators and the algebra generated by them is of
central importance for the physical applications we have in mind and their mapping is our main
focus next.

In the following developments results will be expressed in terms of the tensor operators
(12), (13) and (14), which will be used in the mapping, having in mind that the rescaling (19)
can and should always be performed after the calculation of commutation relations in order to
transform away the operatorq−2J0.

The scalar operator

L0
0 =

[N ]√
[2]
= 1√

[2]
{a†

1a1q
N2 + a†

2a2q
−N1} = 1√

[2]
{[N1]qN2 + [N2]q−N1} (21)

commutes with all components of the first-rank tensorL1
m

[L1
m,L

0
0] = 0 m = −1, 0, 1. (22)

Hence (21) is an invariant of the subalgebra defined in (17). The combinationsNµ =
L1

0 +µqµL0
0 given explicitly forµ = ±1 as

N1 = L1
0 + qL0

0 =
√

[2][N2]q−N1 N−1 = L1
0 − q−1L0

0 = −
√

[2][N1]qN2 (23)

play the role ofq-deformations of operators for the number of bosons of each kind. The
operators (23) can thus be considered as Cartan generators of aq-deformed tensoru(2) algebra
with the operatorsL1

1 andL1
−1 as raising and lowering generators. In terms of the tensor

operatorsL1
m andL0

0 the reduction of aq-deformed tensoru(2) ⊃ su(2)⊗u(1)∼ so(3)⊕o(2)
is so realized.

The pair operatorsT 1
m, T̃

1
m fulfil the following q-commutation relations

[T 1
m1
, T 1

m2
]q2(m1−m2) = 0′ [T̃ 1

m1
, T̃ 1

m2
]q2(m1−m2) = 0. (24)

The commutation relations between theT 1
m andT̃ 1

m close in terms of the respective components
of the tensor operators (14). The subset withm1 +m2 6= 0 can be presented in a unified way as

[T 1
m1
, T̃ 1

m2
]q2(m2−m1) = −q−2m1

√
[2][2(m2 −m1)]L

1
m1+m2

q−2J0 (25)

while for the case ofm1 +m2 = 0 we obtain

[T 1
1 , T̃

1
−1]q−4 = −q−3[2]q−4J0 + q−1[2]

√
[2]N−1q

−2J0

[T 1
0 , T̃

1
0 ] = [2]q−4J0 +

√
[2](q−1N1− qN−1)q

−2J0

[T 1
−1, T̃

1
1 ]q4 = −q3[2]q−4J0 − q[2]

√
[2]N1q

−2J0. (26)

In [14] the commutation relations of the operatorL1
m,m = 0,±1 with T 1

m andT̃ 1
m are also

given. Taken together with the commutators (26) it can then be shown that in the limitq → 1
the correct commutation relations for ansp(4, R) ∼ o(3, 2) ⊃ so(3)⊕ o(2) algebra [17] are
closed. This identification permits us, after the rescaling (19), to define by means of ansuq(2)
ITO aq-deformation of the physically interestingsp(4, R) algebra.
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3. The mapping procedure

For the tensorq-deformedsp(4, R) algebra constructed in [14, 15] and outlined in the
previous section, a generalized Gauss decomposition [19]G = g− + h + g+, is obtained
in a natural way. This follows as the compact subalgebrah is generated by the operatorŝLlm
(l = 0, 1;m = 0,±1), while g+ andg− are two nilpotent (24) subalgebras containing the

components of the two conjugated first-rank tensorsT̂ lm and̂̃T 1
m, respectively.

We can now consider the Dyson mapping of the tensorq-deformedsp(4, R), by applying in
analogy with the classical case the procedure [23], developed for symplectic algebras spanned
over spherical tensors.

The first step in the mapping is the definition of the images of one of the pair raising or
lowering subalgebrasg+ or g−. In the case considered we first determine the image ofT̃ 1

m as

T̃ 1
m→ b̃m m = 0,±1. (27)

The ‘annihilation’ operators̃bm introduced in this way are assumed to be components of a
first-rank tensor with respect tosuq(2)(1). Another first-rank tensorb†

m is introduced as the
one conjugated tõb1

m in the same way asT 1
m andT̃ 1

m are related in expression (15)

(b̃m)
‡ := (−1)(1−m)q−mb†

−m (b†
m)

‡ := (−1)(1−m)q−mb̃−m. (28)

The two ITOs with respect to thesuq(2) q-vectorsb†
m andb̃m play the role of mapping tools

by means of which we have to construct the images of our initial algebra, in this particular
case of the compact subalgebrah.

As the operators̃bm andb†
m are by definition components of two first-ranksuq(2) tensors,

the images of

L1
m→ I 1

m m = −1, 0, 1 (29)

can be viewed as components of the first-rank tensor product

I 1
m := (b̃ ⊗ b†)1m =

∑
m1,m2

qC
1m=m1+m2
1m11m2

b†
m2
b̃m1. (30)

After calculating theq-deformed CGCs, the explicit representation for the components is
found as

I 1
−1 =

√
[2]

[4]
{qb†
−1b̃0 − q−1b

†
0b̃−1}

I 1
0 =

√
[2]

[4]
{b†
−1b̃1− b†

1b̃−1 + (q − q−1)b
†
0b̃0}

I 1
1 =

√
[2]

[4]
{qb†

0b̃1− q−1b
†
1b̃0}. (31)

By means of the conjugation rules (28) we may check the conjugation of the operators
(31) and obtain for the images the same result (16) as for the initial operators

(I 1
m)

‡ = (−1)−mq−mI 1
−m. (32)

A complete justification for our definition (29) of the images of the operatorsL1
m requires

that we prove that the images close the same set of commutation relations (17) as the initial
operators.

This clearly requires that we know what kind of algebra the basic elements used in the
construction of the mapping, i.e.b†

m andb̃m, close by themselves. In the classical case this is a



Mapping construction forq-deformedso(3)⊂ u(3) embedding 2409

Weyl algebraW(3), defined by the standard boson commutation relations of the creation and
annihilation operators. In theq-deformed case the relation between boson operators and ITOs
with respect tosuq(2) is not so easily obtained, so that it is not immediately obvious which
commutation relations are to be used between theq-vector operators. Our idea is to use, in
analogy with the classical case but appropriately modified, the commutation relations of the
original tensor operators (12) and (13).

With this in mind, we first define the following set ofq-commutation relations

[b̃m, b̃m′ ]qλ := [T̃ 1
m, T̃

1
m′ ]qλ = 0

[b†
m, b

†
m′ ]qλ := [T 1

m, T
1
m′ ]qλ = 0 m,m′ = −1, 0, 1 (33)

to be equivalent to the commutation relations of the respectiveg− andg+ generators given by
(24). This fixesλ = 2(m−m′).

The set of [b†
m, bm′ ]qµ commutators is now separated and treated in two parts.

• The first subset hasm +m′ 6= 0, for which the correspondingq-commutators [T 1
m, T̃

1
m′ ]qa

give terms proportional to the operatorsL1
m,m = ±1 as in (25).

For this set we retain the type ofq-commutator, but neglect the resulting generator, by
defining

[b†
m, b̃m′ ]qµ := 0. (34)

The valueµ = −λ = 2(m′ −m) is hereby determined.

• The second subset consists of combinations of indices withm +m′ = 0 as in (26) where
the results for the generator commutators can all be separated into a first free term together
with anL-dependent term.

Taking this structure as a guideline for the pairs of indices(m,m′) = (1,−1), (0, 0)
and (−1, 1), we again retain the corresponding degree of theq-commutator, neglect the
L-dependent term and hence assume the followingq-commutators

[b†
−1, b̃1]q4 := −αq4q−βJ0

[b†
0, b̃0] := γ q−βJ0

[b†
1, b̃−1]q−4 := δq−βJ0 (35)

in which the parametersα, γ andδ, can beq-numbers, whileβ is a real number.
Our mapping construction now proceeds in analogy with the commutator mapping

methods [23] in the classical case. The values of the parametersα, γ, δ and β in (35)
are accordingly evaluated by imposing the basic condition that the commutation relations
between the images [I 1

m, I
1
m′ ] should be the same as the commutation relations between the

initial operators [L1
m,L

1
m′ ] in (17):

[L1
m,L

1
m′ ] → [I 1

m, I
1
m′ ]. (36)

We now substitute expressions (31) for the operatorsI 1
m,m = 0,±1, in these commutators

and use the commutation relations (33), (34) and (35). Taking care that operator products are
consistently treated in such a way that a non-trivial deformation is retained, we obtain simple
equations for the parameters, which have the following solutions

α = q−1
√

[4] β = 2 γ =
√

[4] δ = −q−3
√

[4]. (37)
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Introducing these values of the parametersα, β, γ and δ into theq-commutators (35), we
finally infer the last set of commutation relations for the operatorsb†

m, b̃m,m = 0,±1, which
can now be jointly expressed as

[b†
m, b̃m′ ]qµ = (−1)2m

′−mq2m′−mδm,−m′
√

[4]q−2J0 (38)

with µ = 2(m′ −m).
Here it must be noted that by comparing the right-hand side of (38) with the free term of

(26) only theJ0 degree of the operatorq and theq-number are changed. Also we do not know
the representation of the operatorJ0 in terms of the operatorsb†

m, b̃m, but we assume that their
action on the tensor operators (2) and (3) is preserved, for example

qJ0b†
m = qmb†

mq
J0 qJ0b̃m = qmb̃mqJ0. (39)

The set of commutation relations (33), (34) and (38) are evaluated in such a way that
the commutation relations between the imagesI 1

m are the same as the commutation relations
between the initial operatorsL1

m (17). In order to remove the additional operatorq−2J0 the
same rescaling (19) of the components of the image operatorI 1

m can be introduced

Î 1
m =

√
[1 + δm,0]I 1

mq
2J0 m = 0,±1. (40)

Hence as a result of mapping and rescaling (40) the operatorsÎ 1
m generate aq-deformed

so(3) algebra withq-commutation relations

[Î 1
m1
, Î 1
m2

]q2(m2−m1) = [m1−m2]q(m2−m1)Î 1
m1+m2

. (41)

4. Theq-deformedsu(3) algebra

The construction of the previous section expresses the image of the subalgebrah of the
q-deformed tensorsp(4, R) algebra in terms of the two conjugated ITOsb†

m andb̃m. As these
operators are, by definition, first-rank tensors with respect tosuq(2), we can also construct,
according to the rules for tensor products (11), the operators

Q2
m := (b†⊗ b̃)2m =

∑
m1m2

C2m
1m11m2

b†
m2
b̃m1 (42)

with m = 0,±1,±2,m1, m2 = −1, 0, 1 andm = m1 +m2, as well as

S0
0 := (b†⊗ b̃)00 =

∑
m1m2

C00
1m11m2

b†
m2
b̃m1. (43)

The components of the second-rank tensor operator, expressed in terms of the mapping
operatorsb†

m, b̃m are

Q2
2 = b†

1b̃1 Q2
−2 = b†

−1b̃−1

Q2
1 =

√
[2]

[4]
{q−1b

†
0b̃1 + qb†

1b̃0} Q2
−1 =

√
[2]

[4]
{qb†

0b̃−1 + q−1b
†
−1b̃0}

Q2
0 =

√
[2]

[3][4]
{q2b

†
1b̃−1 + q−2b

†
−1b̃1 + [2]b†

0b̃0}. (44)

We can interpret this ITO of second rank as a quadrupole operator. Such an interpretation
is justified first by the commutation relation of the component of this operator with the
operatorsI 1

m (31). They are calculated with the help of the commutation relations obtained
in the previous section. We give here the results for the rescaled operatorsÎ 1

m in (40) and
Q̂l
m = Ql

mq
−2J0 (m = 0,±1,±2), respectively

[Î 1
m1
,Q̂2

m2
]q2(m2−m1) = q(m2−m1)Fm1,m2Q̂

2
m1+m2

(45)
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where

F±1,m2 = ±
√

[2∓m2][2 ±m2 + 1]

F0,m2 = −[m2]. (46)

These commutators can be used as defining relations for the components of a tensor
operator with respect to thesu(2) ∼ so(3) q-deformed algebra, generated by the operators
Î 1
m,m = 0,±1. The transition to the classical limit forq → 1 reproduces the results

[L̇M1, Q̇M2] = −
√

6C2M1+M2
1M12M2

Q̇M1+M2 M1 = 0,±1,M2 = 0,±1,±2 (47)

for the ‘algebraic’ quadrupole operatorQ̇2
M and the real angular momentum operatorL̇1

M , as
SU(3) generators [7, 8].

Furthermore, the commutation relations between the components of the operatorQ̂2
m

(m = 0,±1,±2) read

[Q̂2
−2, Q̂

2
−1]q2 = 0 [Q̂2

1, Q̂
2
2]q2 = 0

[Q̂2
−1, Q̂

2
0]q2 = −q

√
[2][3]{Î 1

−1− (q − q−1)[2]Q̂2
−1}

[Q̂2
0, Q̂

2
1]q2 = −q

√
[2][3]{Î 1

1 − (q − q−1)[2]Q̂2
1}

[Q̂2
−2, Q̂

2
0]q4 = q2(q − q−1)

√
[2][3]Q̂2

−2 [Q̂2
0 , Q̂

2
2]q4 = q2(q − q−1)

√
[2][3]Q̂2

2

[Q̂2
−2, Q̂

2
1]q6 = q3Î 1

−1 [Q̂2
−1, Q̂

2
2]q6 = q3

√
[4]Î 1

1

[Q̂2
−2, Q̂

2
2]q8 = q4{[2]2Î 1

0 − (q − q−1)
√

[2][3]Q̂2
0}

[Q̂2
−1, Q̂

2
1]q4 = −q2[2]{Î 1

0 − (q − q−1)
√

[2][3]Q̂2
0}. (48)

Analysing them, it should be noted that they areq-commutators, which give the correct
components of the operator̂I 1

m, according to the rule

[Q̇M1, Q̇M2] = 3
√

10C1M1+M2
2M12M2

L̇M1+M2 M1,M2 = 0,±1,±2 (49)

corresponding to the classical case.
In addition we also obtain in theq-deformed case terms proportional to the respective

components of̂Q2
m (m = m1 +m2 = 0,±1,±2), but with a coefficient containing a(q−q−1)

factor, which approaches zero whenq → 1. This is an important difference in theq-deformed
case, which could lead to new results in physical applications.

After introducing the CGC in the tensor product (43) the explicit expression for the scalar
operator is

S0
0 =

1√
[3]
{q−1b

†
1b̃−1 + qb†

−1b̃1− b†
0b̃0}. (50)

We can consider the scalar operator obtained in this way as the image of the scalar operator
L0

0, defined in (21)√
[2]L0

0→
√

[3]S0
0. (51)

The reason for this interpretation is thatS0
0 (50) commutes with the components (31) of the

first-rank tensorI 1
m

[S0
0, I

1
m] = [L0

0, L
1
m] = 0 m = 0,±1. (52)

Finally, we have to calculate the commutation relations of the scalar operatorS0
0 with the

components ofQ2
m, for which we similarly find

[S0
0,Q

2
m] = 0 m = 0,±1,±2. (53)
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Introducing the images of the operatorsL0
0 and L1

0 in equations (23), the images of
q-deformations of the boson number operators can now both be obtained in terms ofq-deformed
vectors

[N1]qN2 →
(
qb

†
1b̃1− q

−1

[2]
b

†
0b̃0

)
[N2]q−N1 →−

(
q−1b

†
1b̃−1− q

[2]
b

†
0b̃0

)
. (54)

An important difference with the constructions of [11, 12] is, therefore, that we are able
to express theq-number operators (54) in terms ofq-bosons and that we are able to construct
a q-analogue of the physically relevant quadrupole operator. This difference underlines the
important role of the conditions imposed for the evaluation of the commutation relations
betweenq-vectors. The mapping procedure used by us for this purpose seems to be quite
appropriate to obtain not only the simplest representations ofq-deformed algebras, but also
the embedding of theq-deformedso(3) in u(3), thereby answering some of the questions that
remained open in [12].

5. Conclusions

In conclusion we have obtained the image of the subalgebraso(3) of the tensorq-deformed
algebrasp(4, R) ∼ o(3, 2) in terms of theq-deformed spherical tensorsb†

m andbm of first
rank and were able to exploit this image in the construction of aq-deformedu(3) algebra.
The key problem solved was to establish the commutation relations between theseq-bosonic
type operators. For this purpose a mapping procedure, developed here for theq-deformed
case, was applied in which the operatorsb†

m andbm were used as the basic mapping tools.
The images of the generators of the initial compactq-deformed subalgebrasu(2) ∼ so(3)
are obtained as tensor products of rank zero and one of theq-deformed vectors. The scalar
operator is interpreted as aq-deformation of the number operator and the first-rank tensor as
an angular momentum operator. The additionalq-deformed quadrupole operatorQ2

m, which
is considered as aq-analogue of the Elliott quadrupole operator [7], extends the initialso(3)
algebra to aq-deformation ofsu(3). It must be emphasized once again, that working in terms
of q-deformed spherical tensors provides a natural basis in theq-deformed case for obtaining
the reduction ofu(3) to the angular momentum algebraso(3).

From the calculated commutation relations between the scalar operatorS0
0 (43), the

rescaled tensor operatorŝI 1
m (40) andQ̂2

m (49) and their respective limits whenq → 1,
the following conclusions can be drawn. As a result of the commutation relations (41) the
components of the operator̂I 1

m close aq-deformation of ansu(2) algebra isomorphic to an
so(3) algebra, which we can interpret as the angular momentum algebra in this case. From
the relations (52) it is obvious that the operatorsÎ 1

m andS0
0 generate aq-deformation of au(2)

algebra and the following reduction is realized

uq̃(2) ⊃ suq̃(2)⊕ uq̃(1). (55)

The indexq̃ denotes that this is not the standardq-algebra, but generally aq-deformation of
the same type of ‘classical’ Lie algebra.

From the commutators (48) and (45) it can be concluded that the components ofÎ 1
m and

Q̂2
m, eight in total, close aq-deformation of ansu(3) algebra and with the scalarS0

0 (53) a
q-deformation of au(3) is generated. Moreover, the reduction chain

uq̃(3) ⊃ suq̃(3)⊕ uq̃(1) ⊃ soq̃(3)⊕ oq̃(2) (56)

important for applications in various nuclear structure models, is realized.
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By stressing and exploiting analogies with a standard approach to algebraic structures
in nuclear physics models, including the role of embedding relationships, we have obtained
in a non-standard and novel way a representation of aq-deformedu(3) algebra in terms of
spherical tensors which have clear physical analogues in the classical algebraic models. This
construction leads in a quite natural way to the reduction (56) which should pave the way for
applications built onq-deformed quadrupole structures.
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