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Abstract. Anticipating subsequent applications in nuclear structure theory, a first construction of
a Dyson mapping for a-deformed: (3) algebra, relevant to this field, is presented. To achieve this,

a g-deformedsp (4, R) algebra is initially considered, realized in terms of tensor operators with
respect to the standasd, (2) and containing g-deformedso(3) angular momentum algebra. The
desired mapping is then realized in terms of two boson-type conjugated tensor operators of first
rank. A key problem is to determine the commutation relations between them. Our construction is
based on the requirement that subsets of the commutation relations of the owg8)allgebra is
preserved. As aresult the images of th€3)-subalgebra afp (4, R) close the same commutation
relations as the initial subalgebra of the angular momentum. In additiedrediormed: (3) algebra,
containing theso(3)-subalgebra of the images, is obtained. Its generators arg-tleformed
components of a quadrupole operator, together with the images eb¢Bgsubalgebra. In the
limiting caseg — 1 the reductionu(3) D so(3), crucial to nuclear structure physics, is recovered.

1. Introduction

In the last decade interest in deformed algebraic structures, introduced some time ago, has
been re-established and much work has been done both in developing the mathematical theory
of quantum algebras and at the same time extending their physical applications [1]. Some
applications, aiming to explore the possible role of gh@eformation parameter in the theory
of nuclear collective structure have, for example, been reported at the lewe] @ [2-4].
Nevertheless, more general applications in this field are still restricted, a situation which may
be addressed by further exploriggdeformed group theoretical structures and methods, in
particular linked to they-deformed extensions of algebraic models associated with nuclear
collective motion [5, 6].
A case in point concerns the reduction of th&3) algebra, containing the components

2 (m = 0, £1, £+2) of the algebraic quadrupole operator, to th€3) algebra of the angular
momentunl.} (m = 0, &:1). Thisis a basic and crucial element, common to nuclear collective
models which exploit the important quadrupole degree of freedom in conjunction with a
classification scheme which utilizes angular momentum, starting with the BIlig@) model
[7]and also using, for example, in the pseusid{3) model [8], the symplectic collective model
[9] and the interacting boson model (IBM) [10]. However, this reduction is a complicated,
and not completely resolved problem in theleformed extension, into which much effort has
recently been put [11, 12].
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In [11] the construction ofsu,(3) is approached by generating an,(3)-algebra,
isomorphic to the standarg,(2), in terms of three-dimensional (3@)-oscillators. By
construction, thisu,(2) is then a subalgebra of the,(3) in the Chevalley basis, but its
generators do not formgdeformed tensor of first rank. Furthermore, this approach does not
facilitate the construction of thgg-analogue of the physically important quadrupole operator.

In our construction later we succeed in addressing both these issues.

What is obtained in [11] is a 3D representatiors@f (2) which is further used by Quesne
[12] to defineg-bosonic operators which transform @gensor operatorsfvectors) under
thissu, (2). Their coupled commutators are written down in [12] in analogy with the classical
case for the semidirect sum of the Heisenberg—Weyl Lie algelyBx andso(3). A Dyson
representation in terms of the standartiosonic oscillators is then obtained. By irreducible
tensor coupling a scalar, a vector and a rank two tensor are proven to gengidgéoamation
of a quadratia:(3) which, however, is not a-analogue of the Elliott (3) algebra, as obtained
by us.

Our construction is based, among other considerations, on the observation that a very
natural way to obtain the embedding of the angular momentum algebra is to consider tensor
operators with respect to it and then to generate the higher rank algebras in terms of these
operators. This is a procedure used in most of the well known algebraic models. In order
to extend this technique one needs a well developed theory of the angular momentum in the
q-deformed case, but the Wigner—Racah algebratoy(2) is already well developed and so
we will use the definitions and results of [13].

Based on this ideag-deformedsp (4, R) algebra is generated in [14, 15] by the possible
tensor products of the two fundamensal, (2) spinors. Inthe classical case this algebra [16] is
of physical interest by itself and is also easily generalized to the higher rank cgsé3+R),

n = 3,4,....In general, the grougp(2n) can be used to describe pairing correlations in
systems containing different kinds of particles [17], while the non-compact version of this group
is applied in the description of collective vibrational excitations of a system of particles moving
in ann-dimensional harmonic oscillator potential. With similar applications in mind in the
g-deformed case we emphasise that a natural procedure entails embedding-tdetaned

sp(4, R) algebra, by construction,gdeformedso(3)-subalgebra, the latter being generated
by the components of a first-rank tensb}, (m = 0, 4-1) which can be interpreted as an
angular momentum operator.

A further consideration is that the symplectic algebras are particularly convenient for
boson mapping, a situation often exploited in nuclear structure physics. Originally the
mapping methods [18] were formulated and motivated from the point of view of replacing
fermion degrees of freedom directly with exact boson degrees of freedom. This mapping of
fermion pairs provides a certain microscopic justification for various boson models of nuclear
structure. Further development of these methods also points to the efficiency and usefulness of
a group theoretical interpretation of the formalism and facilitated their generalization to other
systems which have a definite algebraic structure, such as boson pairs and spherical tensors.
Mappings of this kind have also been used to obtain the relationship between the different
boson models [19].

This mapping procedure generally leads to a larger space for the boson images of the initial
algebra. Reducing this larger space to the required dimension of the initial one is formulated
as the identification of non-physical or spurious states [20]. A solution of this problem can
be obtained by means of a pure group-theoretical analysis, both in the case of the mapping
of fermion (compact) [21] or boson (non-compact) [19] pairs (algebras). This procedure is
actually equivalent to obtaining the embedding of the image of the initial algebra in the larger
space of the images.
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Our idea is to use a similar procedure in theleformed case in order to obtain through
the mapping of thep(4, R) algebra the embedding of the image ofitg3) subalgebra in
the larger space of the images, which is proven to be spanned by the generatar&3pf a
g-deformed algebra. For this purpose, in analogy with the classical case, a Dyson mapping of
theg-deformedsp(4, R) obtained in [15] is considered.

The paper is organized as follows: we first present notation, definitions and a short review
of theq-deformedsp (4, R) algebra. For this algebra the mapping procedure is then given step
by step, using, where possible, analogies with the classical Dyson mapping. The resulting
algebraic structure associated with the image of the compact subalg&Bjacan then be
utilized to construct images far-deformed quadrupole operators, finally leading to(3)
realization and the important embeddin@®) C so(3) for g-algebras.

2. The initial g-deformed sp(4, R)

In [14, 15] ag-deformation of the physically interesting (4, R) algebra is generated in terms
of irreducibleg-tensor operators with respect to the oscillator representation of the standard
su,(2) algebra, defined through the commutation relations of its generatanad Jo

[Jo, J+] = £/ [J+, J-] = [2Jo] 1)

where K] = (¢* —¢7%) /(g —q™".
As in [13] an irreducible tensor operator (IT@QY of rank [ is defined through the

commutation relations of its components!, (m = —I,—I + 1,...,1) with the su,(2)
generators

[o. ¢T,] =m T, @)

Ve g Ty = VI F mlll £m+1], T, 097" (3)
where

[A, Bl = AB — q" BA @

andm is called the degree of thg-commutator. The oscillator representation [22] of the
algebras considered is given in terms of annihila'zi:p,ncreationa;r (with (al.T)’r = a;) and

number operatord; of g-bosonsi = 1, 2, ..., r) which satisfy
aial —qala; = g™ (5)
aial — g~lafa = g ©)
[Ni,ai]=—a;  [Ni,a]l=aq]. (7)

The operatorg;, a;r andN; fori = 1, 2 do not form an ITO [1] with respect to the boson
oscillator representation of the, (2) algebra

N1 — N,
Jy = aIaz J_ = a;al Jo= = 5 2, (8)
However, the following modification of the creation and annihilation operators [1, 15]
t2.12 = ajq"?/? ty2-12 = azqg /2 9)
fj2172 = q M2azqN? fij2.-12 = —q*?a1q™? (10)

defines the components of two tensors of rapiR {spinors) with respect to the boson [1]
representation of thex,(2) algebra defined by the generators (8). We observe that in the
q-deformed case the construction of bosap(2) tensor operators is more complicated than
in the classical case.
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Working in terms of ITOs gives us the possibility to use the tensor product with respect
to thesu, (2), defined in accordance with standard comultiplication rules for this algebra [13].
The tensor product of two ITOs is defined as in the classical case in the following way

I k . k [
(TO® 0 =", 00, T (11)
miymy

where the following restrictions hold

r=lk—I,lk—1+1],...,k+I m=mi+my=—r,—r+1...,r
my=—1,—I+1,...,1 my=—k,—k+1 ... k.

The,C} .., @re Clebsch—Gordan coefficients (CGCs) forthg(2) Wigner—Racah algebra,
obtained in [13].
From the two fundamental, (2) spinors (9) and (10) the following tensor products can

be constructed by means of the definition (11)

{11/2 ® t]_/z}fn = Tnl1 I=1 m=0=+1 (12)

{12 ® f1j2), =T I=1 m=0,%1 (13)

{f12 ® t1)2},, = L, 1=0,1, m=—l,—I+1,...,1. (14)
The explicit form of the operatorg!, > andL!, in terms of boson annihilation and creation
operators; andaiT, i = 1,2, is given in [14]. Important properties of the tensor operators
obtained in this way are their conjugation relations

(TF = (=D "g T, (TpF=(-DF"g T, (15)

(L) = (=) "g "L, (16)

Using equations (5), (6) and (7), the commutation relations between the opefators
T:m =0,+1andL! ;1 = 0,1;m = —1, —I+1,...,1 are calculated in [14]. In so doing
the g-boson commutation relations are applied according to the convention that equation (5)
applies to = 1, while equation (6) applies to= 2. This convention complies with the tensor
nature of the spinors (9) and (10) and the tensor products (12), (13) and (14).

Later we introduce and discuss these commutation relations, from a point of view which
is more appropriate for the purpose of obtaining-aoson realization of thg-deformed
sp(4, R), finally to be extended ta(3).

First, we focus on the components of the operdthwhich satisfy

[Lh.. L1 =mig” ") /[21L5, a2 my # 0. 17

On the right-hand side of equation (17) we see that, in addition to the expected appropriate
componenTL,%11+m2, the operatoy; ~2’°, which in the limitg — 1 tends to one, also appears.
This is a direct consequence of the deformation limit and can be traced explicitlygtéoibeon
commutator convention mentioned earlier.

The operatoy —>% obviously commutes with the tensor operators (12), (13) and (14),

according to their tensorial properties (2), in the following way
[g72°, K},];2 = 0 (18)
wherek!, represents any of the ten components of the operaforg! andT:,%, [=0,L,m=

0, &1. Itis simple to transform away 2’ on the right-hand side of equation (17) if we rescale,
as in [15], each component of the generators to

Kl = A +8m0Klg® =01 m=0+1 (19)
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This rescaling only changes the degree of gheommutators, as can, for example, be seen
explicitly in the modification of the commutation relations (17)

[L]Vhl’ LI];lz]qz('”Z’ml) = [n’ll — mZ]Q(mz_ml)L}nl+m2~

(20)

The operatorsLE can thus be interpreted as generators gfdeformedso(3) algebra,
isomorphic to ag-deformedsu(2). These operators and the algebra generated by them is of
central importance for the physical applications we have in mind and their mapping is our main
focus next.

In the following developments results will be expressed in terms of the tensor operators
(12), (13) and (14), which will be used in the mapping, having in mind that the rescaling (19)
can and should always be performed after the calculation of commutation relations in order to
transform away the operatgr2’.

The scalar operator

L= % = %{aialqm +ayag ) = ﬁ{wﬂq” +[Nalg ™) (21)
commutes with all components of the first-rank tensr

[L:, L9 =0 m=-1,0,1 (22)
Hence (21) is an invariant of the subalgebra defined in (17). The combinatipns-
L3+ ug™ L3 given explicitly foryu = +1 as
Ni=Lg+qLly=VI2Ndg™  Noa= Lj—q 'L = —V[2[Nilg™ (23)

play the role ofg-deformations of operators for the number of bosons of each kind. The
operators (23) can thus be considered as Cartan generatersiefarmed tensar(2) algebra
with the operatorsL% and LEl as raising and lowering generators. In terms of the tensor
operatord.} andLg the reduction of g-deformed tensar(2) D su(2) ®u(1) ~ so(3) B o(2)
is so realized.

The pair operatorg’t, T2 fulfil the following g-commutation relations

m?* m
T2, T2 oo =0 (T4, T4 w0 = 0. (24)

The commutation relations between heand7 ! close in terms of the respective components
of the tensor operators (14). The subset witht m, # 0 can be presented in a unified way as

[T, Tpt lg2me-mn = —q 2" V/[20[2(mz — mD)]IL}, 4,.q 2" (25)

while for the case ofi11 + m> = 0 we obtain

(7L, T2+ = —¢ 321~ + ¢~ [2][2]N_1g 2"
[T, T3] = [21g~*"° +/[2](g N1 — gN_1)g 2P
(72, TH,e = —4°12l~* — q[2]y/[2]N1g 2", (26)

In [14] the commutation relations of the operatdy, m = 0, +1 with 7.} and7'! are also
given. Taken together with the commutators (26) it can then be shown that in the kmif
the correct commutation relations for gmn(4, R) ~ 0(3, 2) D so(3) ® o(2) algebra [17] are
closed. This identification permits us, after the rescaling (19), to define by meansugf(@n
ITO ag-deformation of the physically interesting (4, R) algebra.
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3. The mapping procedure

For the tensorg-deformedsp(4, R) algebra constructed in [14,15] and outlined in the
previous section, a generalized Gauss decompositionJ19] g_ + h + g., is obtained

in a natural way. This follows as the compact subalgébisagenerated by the operatat$,

(! =0,L;m = 0,£1), while g, andg_ are two nilpotent (24) subalgebras containing the
components of the two conjugated first-rank ten@randfn}, respectively.

We can now consider the Dyson mapping of the tepsteformedp (4, R), by applyingin
analogy with the classical case the procedure [23], developed for symplectic algebras spanned
over spherical tensors.

The first step in the mapping is the definition of the images of one of the pair raising or
lowering subalgebrag. or g_. In the case considered we first determine the imagé}cﬁs

Tyi — by, m=0,=+1 27)
The ‘annihilation’ operators,, introduced in this way are assumed to be components of a

first-rank tensor with respect tar, (2)(1). Another first-rank tensdr! is introduced as the
one conjugated 6} in the same way a&! and7?! are related in expression (15)

(Bm)i = (_1)(17m)qimbim (b;-l;)i = (_1)(17m)q7m5—m~ (28)

The two ITOs with respect to the:, (2) g-vectorsb! andb,, play the role of mapping tools
by means of which we have to construct the images of our initial algebra, in this particular
case of the compact subalgelira
As the operators,, andb are by definition components of two first-rank, (2) tensors,
the images of

L -1t m=-101 (29)
can be viewed as components of the first-rank tensor product
1= Gebhh =Y it b, (30)
ma,mp

After calculating they-deformed CGCs, the explicit representation for the components is
found as

1 (2]

1Y = [ gb" by — g bib 1)
ST e °
o1 . ) 3
k= %{b*lbl —bib_1+(q — g Hbgho)
2 » ~
It = u{qbgbl — g *bibo}. (1)

[4]
By means of the conjugation rules (28) we may check the conjugation of the operators
(31) and obtain for the images the same result (16) as for the initial operators

UHF = (=D™"g ™I, (32)
A complete justification for our definition (29) of the images of the operatgreequires
that we prove that the images close the same set of commutation relations (17) as the initial
operators.

This clearly requires that we know what kind of algebra the basic elements used in the
construction of the mapping, i.&], andb,,, close by themselves. In the classical case this is a
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Weyl algebraW (3), defined by the standard boson commutation relations of the creation and
annihilation operators. In the-deformed case the relation between boson operators and ITOs
with respect tosu, (2) is not so easily obtained, so that it is not immediately obvious which
commutation relations are to be used betweemtivector operators. Our idea is to use, in
analogy with the classical case but appropriately modified, the commutation relations of the
original tensor operators (12) and (13).

With this in mind, we first define the following set gfcommutation relations

(b, burlyr =T, Tr],» =0

(6!, b 1, = [T TE], =0 m,m =—1,0,1 (33)

m? m

to be equivalent to the commutation relations of the respegtivendg.. generators given by
(24). This fixesh = 2(m — m’).
The set of p; , by]4+ commutators is now separated and treated in two parts.
e The first subset has +m’ # 0, for which the corresponding-commutatorsT?, T,,},]qu
give terms proportional to the operatdry, m = +1 as in (25).

For this set we retain the type gfcommutator, but neglect the resulting generator, by
defining

(b, by]yn := 0. (34)
The valueu = —\ = 2(m’ — m) is hereby determined.

e The second subset consists of combinations of indicesmwithn’ = 0 as in (26) where
the results for the generator commutators can all be separated into a first free term together
with an L-dependent term.

Taking this structure as a guideline for the pairs of indieasm’) = (1, —1), (0, 0)
and (-1, 1), we again retain the corresponding degree of ghgommutator, neglect the
L-dependent term and hence assume the folloyysegmmutators

[b" 1, bil,e = —agiq PP
[b3, bo := yq~#%
[b]. b_1]y-s := 8g P (35)

in which the parameteks, y ands, can beg-numbers, whiles is a real number.

Our mapping construction now proceeds in analogy with the commutator mapping
methods [23] in the classical case. The values of the parameteys § and 8 in (35)
are accordingly evaluated by imposing the basic condition that the commutation relations
between the imaged ], 1}] should be the same as the commutation relations between the
initial operators L2, L ]in (17):

m

(LY, Lr] — [1t, 1t]. (36)

We now substitute expressions (31) for the operathrs: = 0, &1, in these commutators
and use the commutation relations (33), (34) and (35). Taking care that operator products are

consistently treated in such a way that a non-trivial deformation is retained, we obtain simple
equations for the parameters, which have the following solutions

a=q¢ 4 =2 y=VH4 s=-¢3/Ml (37)
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Introducing these values of the parameters, y andé into the g-commutators (35), we
finally infer the last set of commutation relations for the opera&@r,sbm, m = 0, +1, which
can now be jointly expressed as

[bj;,s Em’]q“ = (_1)2m,_mq2m,_m8m,fm’ [4]61_210 (38)

with © = 2(m’ — m).

Here it must be noted that by comparing the right-hand side of (38) with the free term of
(26) only theJ, degree of the operatgrand theg-number are changed. Also we do not know
the representation of the operatirin terms of the operatois, b, but we assume that their
action on the tensor operators (2) and (3) is preserved, for example

q"bl, =q"bla”  q"bw =q"bug”. (39)

The set of commutation relations (33), (34) and (38) are evaluated in such a way that
the commutation relations between the imagieare the same as the commutation relations
between the initial operatost (17). In order to remove the additional operagor” the
same rescaling (19) of the components of the image opefatean be introduced

Il = /L +8, 01 %" m=0,+1. (40)
Hence as a result of mapping and rescaling (40) the oper%cgenerate g-deformed
so(3) algebra withq—commutation relations

—_—
(mz—my) 11
mytmy*

[ my’ mz]qz(”’z_ml) - [ml - mz]q (41)

4. The g-deformed su(3) algebra

The construction of the previous section expresses the image of the subaigebithe
g-deformed tensarp(4, R) algebra in terms of the two conjugated ITbjyﬁandBm. As these
operators are, by definition, first-rank tensors with respest}@2), we can also construct,
according to the rules for tensor products (11) the operators

Q% =0b"®b%=> CI ., bhbn (42)

mimsz

withm = 0, 1, 12 mq, my = —1,0, 1 andm = m +mo, as well as
=" @b =Y C1,,bh b, (43)

nmaymsy
The components of the second-rank tensor operator, expressed in terms of the mapping
operators! , b,, are

03 = blby 0%, =b"1b

(2]
(4]

[2]
(3](4]
We can interpret this ITO of second rank as a quadrupole operator. Such an interpretation

is justified first by the commutation relation of the component of this operator with the

operators/} (31). They are calculated with the help of the commutation relations obtained

in the previous section. We give here the results for the rescaled opef,ét'ms(40) and
Q! = Q! g=2% (m = 0, £1, £2), respectively

[1L., 02 J,emom = 4™ Fons iy 0o (45)

2 - -
0% = | Z=2{q™ b{b1 + qblbo) 0%, = %{qbébﬁq—lbilbo}

0% = | ==_{q?blb_1+q 2" by + [2]bbo). (44)
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where

Fitm, = EV[2 Fmol[2 £mp +1]
Fom, = —[mz]. (46)
These commutators can be used as defining relations for the components of a tensor

operator with respect to the:(2) ~ so(3) g-deformed algebra, generated by the operators
11, m = 0, £1. The transition to the classical limit fgr— 1 reproduces the results

(L, O] = —VBCEI Oppians,  My=0, %1, Mp = 0, £1, £2 (47)

for the ‘algebraic’ quadrupole operatQ‘,?V, and the real angular momentum operdt@,[, as
SU (3) generators [7, 8]. e

Furthermore, the commutation relations between the components of the op@fator
(m =0, £1, +2) read

(07, 0%, =0 [0} 03l =0
(0%, Q3> = ~gVI2IBIUIE, - (g — ¢ H1210%)
[03. 02,2 = —qv/I2IBIUL} - (¢ — ¢ M[2103)
[0%,. 03y = ¢%(q — ¢ WRIBIQ?,  [03. 03y = ¢%(q — ¢ VIRIBI 03
[é\z—z’ é\ﬂqe = q?’a [é\z—l’ ’Q\g]qs = qg\/mfll
[0%,, 03, = ¢“121¢ — (¢ — ¢ V2131 03)
[024. 031+ = —a?21{1§ — (¢ — ¢ V2131 03). (48)
Analysing them, it should be noted that they areommutators, which give the correct
components of the operatdf, according to the rule
[Quy: O] = 3VIOCo 5 Lasyers,  Ma, My =0, +1, £2 (49)

corresponding to the classical case.

In addition we also obtain in the-deformed case terms proportional to the respective
components 002 (m = m1+my = 0, £1, £2), but with a coefficient containing@ — )
factor, which approaches zero when-> 1. This is an important difference in thedeformed
case, which could lead to new results in physical applications.

After introducing the CGC in the tensor product (43) the explicit expression for the scalar
operator is

o 1

SO — “pth  +gbt by — blbo). 50
0 m{q 1b—1+gb_1b1 — bybo} (50)

We can consider the scalar operator obtained in this way as the image of the scalar operator
L3, defined in (21)

VI21LY — V3180 (51)
The reason for this interpretation is thgft (50) commutes with the components (31) of the
first-rank tensor !

[89, 1} =1[LY, L] =0 m=0,+1. (52)
0 'm m

Finally, we have to calculate the commutation relations of the scalar opefuoith the
components oD?, for which we similarly find

[S3, Q2] =0 m=0,+1,+£2. (53)
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Introducing the images of the operatob% and L} in equations (23), the images of
g-deformations of the boson number operators can now both be obtained in terusfofmed

vectors
-1

[N1]g™? — (qblgl - %]bééo)
[Nolg ™V — —<q—1b1151 - ["7]1%150). (54)
An important difference with the constructions of [11, 12] is, therefore, that we are able

to express thg-number operators (54) in termsgfbosons and that we are able to construct
a g-analogue of the physically relevant quadrupole operator. This difference underlines the
important role of the conditions imposed for the evaluation of the commutation relations
betweeng-vectors. The mapping procedure used by us for this purpose seems to be quite
appropriate to obtain not only the simplest representationsdadgformed algebras, but also
the embedding of the-deformedso(3) in u(3), thereby answering some of the questions that
remained open in [12].

5. Conclusions

In conclusion we have obtained the image of the subalgeki® of the tensoi-deformed
algebrasp(4, R) ~ o(3, 2) in terms of theg-deformed spherical tensobd, andb,, of first
rank and were able to exploit this image in the construction gfdeformedu(3) algebra.
The key problem solved was to establish the commutation relations betweelg thesenic
type operators. For this purpose a mapping procedure, developed here fedéiermed
case, was applied in which the operatdfsandb,, were used as the basic mapping tools.
The images of the generators of the initial compgaeteformed subalgebra:(2) ~ so(3)
are obtained as tensor products of rank zero and one qf-tlteformed vectors. The scalar
operator is interpreted asgadeformation of the number operator and the first-rank tensor as
an angular momentum operator. The additiapaleformed quadrupole operat@? , which
is considered as g-analogue of the Elliott quadrupole operator [7], extends the initiéd)
algebra to @-deformation ofu(3). It must be emphasized once again, that working in terms
of g-deformed spherical tensors provides a natural basis ip-theformed case for obtaining
the reduction of/(3) to the angular momentum algebr&(3).

From the calculatedAcommutaticlrl relations between the scalar opél(%u(d?)), the
rescaled tensor operatofd (40) and Q2 (49) and their respective limits whep — 1,
the following conclusions can be drawn. As a result of the commutation relations (41) the
components of the operatd} close ag-deformation of arsu(2) algebra isomorphic to an
so(3) algebra, which we can interpret as the angular momentum algebra in this case. From
the relations (52) it is obvious that the operatffsandsS) generate g-deformation of a:(2)
algebra and the following reduction is realized

uz(2) O suz(2) dug(l). (55)

The indexg denotes that this is not the standgrdlgebra, but generally g-deformation of
the same type of ‘classical’ Lie algebra. R

From the commutators (48) and (45) it can be concluded that the componédjjtsuod

@Z, eight in total, close g-deformation of arvu(3) algebra and with the scala}?} (53) a
g-deformation of a«(3) is generated. Moreover, the reduction chain

1G(3) D suz(3) ®uz(l) O soz(3) @ 0;3(2) (56)
important for applications in various nuclear structure models, is realized.
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By stressing and exploiting analogies with a standard approach to algebraic structures
in nuclear physics models, including the role of embedding relationships, we have obtained
in a non-standard and novel way a representation gidaformedu (3) algebra in terms of
spherical tensors which have clear physical analogues in the classical algebraic models. This
construction leads in a quite natural way to the reduction (56) which should pave the way for
applications built ory-deformed quadrupole structures.
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